Preview

Здравоохранение Российской Федерации

Расширенный поиск

Обзор химического, биологического и ядерного оружия и его влияния на здоровье человека

https://doi.org/10.18821/0044-197X-2017-61-2-103-112

Полный текст:

Аннотация

Изобретение химического оружия тесно связано с историей XXвека, так как оно меняло ход военных событий. Со временем в результате разработки биологического, ядерного и термобарического оружия появилась область исследования новых радикальных средств массового поражения. Рост потребности в более модернизированном и эффективном оружии нанес неизмеримый ущерб качеству жизни, привел к жертвам и серьезным последствиям для окружающей среды. Влияние длительной экспозиции токсичных выбросов оказывает воздействие на различные системы и органы человеческого организма, вызывая изменения от слабо выраженных симптомов до необратимых состояний и в конце концов летальный исход. Стимуляция процессов мутагенеза и онкогенеза влияет на структуру клеточных биомолекул посредством генетических изменений, и такое событие протекает в течение определенного периода времени и приводит к отдаленным изменениям. Наблюдаемые последствия вызвали серьезные опасения всего мирового сообщества, что привело к заключению коллективных договоров и соглашений. Тем не менее необходимо усилить совместные действия, направленные на ограничение использования радикального оружия.

Об авторах

Д. .. Петракис
Университет Крита
Россия


Л. .. Вассилопулу
Университет Крита
Россия


А. О. Доцея
Университет медицины и фармацевтики
Россия


Э. .. Гофита
Университет медицины и фармацевтики
Россия


С. .. Вукиник
Университет Обороны; Государственный токсикологический центр MMA
Россия


В. Н. Ракитский
ФБУН «Федеральный научный центр гигиены им. Ф.Ф. Эрисмана» Роспотребнадзора
Россия


А. М. Тсатсакис
Университет Крита
Россия


Список литературы

1. Kotora J.G. An assessment of chemical, biological, radiologic, nuclear and explosive preparedness among emergency department healthcare providers in an inner city emergency department. Am. J. Disaster Med. 2015; 10(3): 189-204. doi: 10.5055/ajdm.2015.0202.

2. Health Effects from Chemical, Biological and Radiological (CBR) Weapons. Department of Veterans Affairs; 2003.

3. Fitzgerald G.J. Chemical warfare and medical response during World War I. Am. J. Public. Hlth. 2008; 98(4): 611-25.

4. Frischknecht F. The history of biological warfare. EMBO Rep. 2003; 4(Suppl. 1): S47-52.

5. Eitzen E.M. Textbook of Military Medicine. Historical Overview of Biological Warfare. In: Medical Aspects of Chemical and Biological Warfare. 1997; Part I, 18: 415-23.

6. Carter Pearson G.S. North Atlantic chemical and biological research collaboration: 1916-1995. J. Strateg. Stud. 1977; 19: 74-103.

7. Jeffery S.K. History of chemical and biological warfare: An American perspective. In: Medical Aspects of Chemical and Biological Warfare. 1977; (2): 9-86.

8. Sidell F.R. Nerve agents. In: Medical Aspects of Chemical and Biological Warfare, 1977; 5: 129-79.

9. Dunn M.A., Brennie E., Hackley Jr., Sidell F.R. Pretreatment for nerve agent exposure. In: Medical Aspects of Chemical and Biological Warfare. 1977; 6: 181-96.

10. Greenberg M. Public health, law, and local control: Destruction of the US chemical weapons stockpile, Am. J. Publ. Hlth. 2003; 93: 1222-6.

11. Carota A., Calabrese P., Bogousslavsky J. Neurotoxic weapons and syndromes, Front. Neurol. Neurosci. 2016; 38: 214-27.

12. Ganesan K., Raza S.K., Vijayaraghavan R. Chemical warfare agents. J. Pharm. Bioallied Sci. 2010; 2(3): 166-78. doi: 10.4103/0975-7406.68498.

13. Kranavetvogl A., Küppers J., Gütschow M., Worek F., Thiermann H., Elsinghorst P.W., John H. Identification of novel disulfide adducts between the thiol containing leaving group of the nerve agent VX and cysteine containing tripeptides derived from human serum albumin, Drug Test Analys. 2016. doi: 10.1002/dta.2144. [Epub ahead of print].

14. John H., Balszuweit F., Kehe K., Worek F., Thiermann H. Handbook of Toxicology of Chemical Warfare Agents. Ed: R.C. Gupta. 2-nd Ed. Amsterdam: Academic Press/Elsevier; 2015: 817-56.

15. Pitschmann V. Overall review of chemical and biochemical weapons. Toxins (Basel). 2014; 6(6): 1761-84. doi: 10.3390/toxins6061761.

16. Hoffman D.E. The Dead Hand. New York: Doubleday; 2009: 310.

17. Wright S. Chemical control-regulation of incapacitating chemical agent weapons, riot control agents and their means of delivery. Med. Confl. Surviv. 2016; 32(1): 82-4. doi: 10.1080/13623699.2016.1171024.

18. Gould C., Folb P. Project Coast: Apartheid’s Chemical and Biological Warfare Programme. UNIDIR-United Nations Institute for Disarmament Research. Geneva, Switzerland and CCR- Centre for Conflict Resolution Cape Town, South Africa, United Nations; 2002.

19. Vásárhelyi G., Földi L. History of Russia’s Chemical Weapons. AARMS. 2007; 6(1): 35-146.

20. Goswami D.G., Tewari-Singh N., Dhar D., Kumar D., Agarwal C., Ammar D.A. et al. Comea. 2016; 35(2): 257-66. doi: 10.1097/ICO.0000000000000685.

21. Keyser B.M., Andres D.K., Holmes W.W., Paradiso D., Appell A., Letukas V.A. et al. Mustard gas inhalation injury: therapeutic strategy. Int. J. Toxicol. 2014; 33: 271-81.

22. Jowsey P.A., Blain P.G. Whole genome expression analysis in primary bronchial epithelial cells after exposure to sulphur mustard. Toxicol. Lett. 2014; 230(3): 393-401, doi: 10.1016/j.toxlet.2014.08.001.

23. Poursaleh Z., Harandi A.A., Vahedi E., Ghanei M. (2012), Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase. Daru. 2012; 20: 27.

24. Veress L.A., Hendry-Hofer T.B., Loader J.E., Rioux J.S., Garlick R.B., White C.W. Tissue plasminogen activator prevents mortality from sulfur mustard analog-induced airway obstruction. Am. J. Respir. Cell Mol. Biol. 2013; 48: 439-47.

25. Li C., Srivastava R.K., Weng Z., Croutch C.R., Agarwal A., Elmets C.A. et al. Molecular mechanism underlying pathogenesis of lewisite-induced cutaneous blistering and inflammation: chemical chaperones as potential novel antidotes. Am. J. Pathol, 2016; 186(10): 2637-49. doi: 10.1016/j.ajpath.2016.06.012.

26. Stone H., See D., Smiley A., Elingson A., Schimmoeller J., Oudejans L. Surface decontamination for blister agents lewisite, sulfur mustard and agent yellow, a lewisite and sulfur mustard mixture. J. Hazard Mater. 2016; 314: 59-66. doi: 10.1016/j.jhazmat.2016.04.020.

27. Greenberg M.I., Sexton K.J., Vearrier D. Sea-dumped chemical weapons: environmental risk, occupational hazard. Clin. Toxicol. (Phila). 2016; 54(2): 79-91. doi: 10.3109/15563650.2015.1121272.

28. Kehe K., Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology. 2005; 214: 198-209.

29. McErloy C.S., Min E., Huang J., Loader J.E., Hendry-Hofer T.B., Garlick R.B. et al. From the cover: catalytic antioxidant rescue of inhaled sulfur mustard toxicity. Toxicol. Sci. 2016; 154(2): 341-53.

30. Ghanei M., Harandi A.A. Molecular and cellular mechanism of lung injuries due to exposure to sulfur mustard: a review. Inhal. Toxicol. 2011; 23: 363-71.

31. Rutkowski K., Dembińska E. Post-war research on post-traumatic stress disorder. Part I. Research before 1989. Psychiatr. Pol. 2016; 50(5): 935-44. doi: 10.12740/PP/OnlineFirst/41232.

32. Graham L.A., Johnson D., Carter M.D., Stout E.G., Erol H.A., Isenberg S.L. et al. A high-throughput UHPLC-MS/MS method for the quantification of five aged butyrylcholinesterase biomarkers from human exposure to organophosphorus nerve agents, Biomed. Chromatogr. 2016: doi: 10.1002/bmc.3830. [Epub ahead of print].

33. Grob D., Harvey A.M. The effects and treatment of nerve gas poisoning. Am. J. Med. 1953; 14(1): 52-63.

34. Schecter W.P. Cholinergic symptoms due to nerve agent attack: a strategy for management. Anesthesiol. Clin. N. Am. 2004, 22(3): 579-90.

35. Wilcox F.A. Dead forests, dying people: Agent orange & chemical warfare in Vietnam. Asia-Pacific. J. 2011; 9(50), (3): @

36. Simkin J. Chemical Warfare, Spartacus Educational: Publishers Ltd. 1997. Available at: http://spartacus-educational.com/VNchemical.htm. Accessed 27 Sept 2016.

37. Wright R. Dreams and Shadows: The Future of the Middle East. New York: Penguin Press; 2008.

38. Bryant T. History's Greatest War. 1st Ed. Delhi: Global Media; 2007.

39. Statistics Department, Center for Documents of The Imposed War, Tehran.

40. Yanagisawa N., Morita H., Nakajima T. Sarin experiences in Japan: acute toxicity and long-term effects. J. Neurol. Sci. 2006; 249: 76-85.

41. Okumura T., Takasu N., Ishimatsu S., Miyanoki S., Mitsuhashi A., Kumada K. et al. Report on 640 victims of the Tokyo subway sarin attack. Ann. Emerg. Med. 1996; 28: 129-35.

42. Pita R., Romero A. Toxins as weapons: a historical review. Forens. Sci. Rev. 2014; 26(2): 85-96.

43. Stem D., Richter M., Schrink L., Lasch P., Keeren K., Polleichtner A. et al. On-site detection of bioterrorism-relevant agents: rapid detection methods for viruses, bacteria and toxins-capabilities and limitations, Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016; 59(12): 1577-86.

44. Cristaldi M., Foschi C., Szpunar G., Brini C., Marinelli F., Triolo L. Toxic emissions from a military test site in the territory of Sardinia, Italy. Int. J. Environ. Res. Publ. Hlth. 2013; 10(4): 1631-46.

45. Armengaud J. Striking against bioterrorism with advanced proteomic and reference methods, Proteomics. 2016. doi: 10.1002/pmic.201600412. [Epub ahead of print].

46. Duriez E., Armengaud J., Fenaille F., Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. J. Mass. Specrom. 2016; 51(3): 183-99. doi: 10.1002/jms.3747.

47. Norris R.S., Cochran T.B. U.S.-USSR/Russian Strategic Offensive Nuclear Forces, 1945-1996. Washington, DC: National Resources Defence Council; 1997: 43.

48. Kristensen H., Norris R.S. Russian nuclear forces, 2014. Bull. Atom. Scient. 2014; 70(2): 77.

49. Norris R.S., Kristensen H.M., U.S. Tactical Nuclear Weapons in Europe, 2011. Bull. Atom. Scient. 2011; 67(1): 64-73.

50. Kristensen H.M., Norris R.S. US nuclear forces, 2015. Bull. Atom. Scient. 2015; 71(2): 107-8.

51. The White House: Office of the Press Secretary. Statement by the President on the 45th Anniversary of the Nuclear Non-Proliferation Treaty. 2015.

52. International Panel on Fissile Materials (2013). Global Fissile Material Report. 2013; 10-1, 20.

53. Boese W. France upgrades, trims nuclear arsenal. Arms Control. Today. 2008; 38(3): 35-6.

54. Kristensen H.M., Norris R.S. Chinese Nuclear Forces, 2013. Bull. Atom. Scient. 2013; 69(5): 75-81.

55. Global Fissile Material Report 2013: Increasing Transparency of Nuclear Warhead and Fissile Material Stocks as a Step Towards Disarmament. 2013: 13, 20.

56. U.S. Department of State. China in the Nuclear Suppliers Group (NSG), Assistant Secretary for Nonproliferation, John S. Wolf’s testimony before the House International Relations Committee. 2004.

57. Kyne D., Bolin B. Emerging environmental justice issues in nuclear power and radioactive contamination. Int. J. Environ. Res. Publ. Hlth, 2016; 13(7). pii: E700. doi: 10.3390/ijerph13070700.

58. Baršienė J., Butrimavičienė L., Grygiel W., Stunžėnas V., Valskienė R., Greiciūnaitė J., Stankevičiūtė M. Environmental genotoxicity assessment along the transport routes of chemical munitions leading to the dumping areas in the Baltic Sea. Mar. Pollut. Bull. 2016; 103(1-2): 45-53. doi: 10.1016/j.marpolbul.2015.12.048.

59. Avrorin V.V., Krasikova R.N., Nefedov V.D., Toropova M.A. The chemistry of rado. Russ. Chem. Rev. 1982; 51(1): 12-20.

60. Gold L.S., Ward M.H., Dosemeci M., De Roos A.J. Systemic autoimmune disease mortality and occupational exposures. Arthr. & Rheum. 2007; 56(10): 3189-201.

61. Rericha V., Kulich M., Rericha R., Shore D.L., Sandler D.P. Incidence of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: a case-cohort study. Environ. Hlth Perspect. 2007; 114(6): 818-22.

62. Ogawa Y., Kobayashi T., Nishioka A., Kariya S., Hasamato S., Seguchi H., Yoshida S. Radiation-induced reactive oxygen species formation prior to oxidative DNA damage in human peripheral T cells. Int. J. Mol. Med. 2003; 11(2): 149-52.

63. Darby S.C., Olsen J.H., Doll R, et al. Trends in childhood leukemia in the Nordic countries in relation to fallout from atmospheric nuclear weapons testing. Br. Med. J. 1992; 304: 1005-9.

64. Pak L., Noso Y., Chaizhunusova N., Anambaeva Z., Adylkhanov T., Takeichi N. et al. Disorder of endothelial vessels’ functional state with malignant tumors in patients exposed anthropogenic radiation. Asian Pac. J. Cancer Prev. 2016; 17(2): 575-9.

65. Simon S.L., Bouville A. Health effects of nuclear weapons testing. Lancet. 2015; 386(9992): 407-9. doi: 10.1016/S0140-6736(15)61037-6.

66. Caldwell G.G., Zack M.M., Mumma M.T., Falk H., Health C.W., Till J.E. et al. Mortality among military participants at the 1957 PLUMBBOB nuclear weapons test series and from leukemia among participants at the SMOKY test. J. Radiol. Prot. 2016; 36(3): 474-89.

67. Gilbert E.S., Huaang L., Bouville A., Berg C.D., Ron E. Thyroid cancer rates and 131I doses from Nevada atmospheric nuclear bomb tests: an update. Radiat. Res. 2010; 173: 659-64.

68. de Vathaire F., Drozdovitch V., Brindel P., Rachedi F., Boissin J.L., Sebbag J. et al. Thyroid cancer following nuclear tests in French Polynesia. Br. J. Cancer. 2010; 103(7): 1115-21. doi: 10.1038/sj.bjc.6605862.

69. National Cancer Institute. Estimated exposures and thyroid doses received by the American people from Iodine-131 fallout following Nevada atmospheric nuclear bomb tests. Washington, DC: National Cancer Institute, National Institutes of Health, US Department of Health and Human Services; 1997.

70. Gordeev K., Shinkarev S., Ilyin L., Bouville A., Hoshi M., Luckyanov N., Simon S.L Retrospective dose assessment for the population living in areas of local fallout from the Semipalatinsk nuclear test site part II: internal exposure to thyroid. J. Radiat. Res. 2006; 47(Suppl.): A137-41.

71. Kerber R.A., Till J.E., Simon S.L. A cohort study of thyroid disease in relation to fallout from nuclear testing. J.A.M.A. 1993; 270(17): 2076-82.

72. Kamiya K., Ozasa K., Akiba S., Niwa O., Kodama K., Takamura N. et al. Long-term effects of radiation exposure on health. Lancet Oncol, 2015; 386(9992): 469-78. doi: 10.1016/S0140-6736(15)61167-9.

73. Durakovic A. Medical effects of internal contamination with actinides: further controversy on depleted uranium and radioactive agents, Environ. Hlth Prev. Med. 2016; 21(3):111-7. doi: 10.1007/s12199-016-0524-4.

74. Li C., Athar M. Ionizing radiation exposure and basal cell carcinoma pathogenesis. Radiat. Res. 2016; 185(3): 217-28. doi: 10.1667/RR4284.S1.

75. Brenner J. Should we worry about inherited radiation risks? Lancet Oncol. 2015; 16(13): 1275-6. doi: 10.1016/S1470-2045(15)00270-3.

76. Naumenko E.A., Ahlemeyer B., Baumgart-Vogt E. (2016),Species-specific differences in peroxisome proliferation, catalase and SOD2 upregulation as well as toxicity in human, mouse and rat hepatoma cells, induced by the explosive and environmental 2,4,6-trinitrotoluene, Environ. Toxicol. 2016. doi: 10.1002/tox.22299.

77. Etnier E.L. Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Regul. Toxicol. Pharmacol. 1989; 9(2): 14-57.

78. Vigreux-Besret C., Mahé A., Ledoux G., Garnier A., Rosin C., Baert A. et al. Perchlorate: water and infant formulae contamination in France and risk assessment in infants. Food Addit. Contam. Part A: Chem. Anal. Control. Expo Risk Assess. 2015; 32(7): 1148-55. doi: 10.1080/19440049.2015.1036382.

79. Rafaels K.A., Bass C.R., Panzer M.B., Salzar R.S. Pulmonary injury risk assessment for long-duration blasts: a metaanalysis. J. Trauma, 2010; 69(2): 368-74. doi: 10.1097/TA.0b013e3181e88122.

80. Bardina J., Thirumalainambi R. Web-based toxic gas dispersion model for shuttle launch operations. In: Proceedings SPIE 5420. Modeling, Simulation, and Calibration of Space-based Systems. 2004; 136. doi:10.1117/12.544853.

81. Thirumalainambi R., Bardina J. Human health risk assessment simulations in a distributed environment for shuttle launch. In: Proceedings SPIE 5420. Modeling, Simulation, and Calibration of Space-based Systems. 2004; 126. doi:10.1117/12.544851.

82. Carlsen L. The Interplay between QSAR/QSPR studies and partial order ranking and formal concept analyses. Int. J. Mol. Sci. 2009; 10(4): 1628-57.

83. Lipanov A.M. Historical survey of solid-propellant rocket development in Russia. J. Propul. Power. 2003; 19(6): 1067-88.

84. Yang R., Liu J.H. et al. Toxic mechanism and protection of unsymmetrical dimethyl hydrazine (UDMH), In: Proceedings of the 3rd International Academic Conference on Environmental and Occupational Medicine. 2006: 132-4.

85. Carlsen L., Kenessov B.N. et al. Assessment of the mutagenic effect of 1,1-dimethyl hydrazine. Environ. Toxicol. Phar. 2009; 28(3):448-52.

86. Kolumbayeva S., Begimbetova D., Shalakhmetova T., Saliev T., Lovinskaya A., Zhunusbekova B. Chromosomal instability in rodents caused by pollution from Baikonur cosmodrome. Ecotoxicology. 2014; 23(7): 1283-91.

87. Kenessov B., Koziel J. et al. Screening of transformation products of 1,1-dimethylhydrazine in soils affected by hydrazinebased rocket fuel spills using solid phase microextraction coupled to gas chromatography-mass spectrometry. In: Abstracts of Papers of the American Chemical Society. 2010; 239: @.

88. Byr’ka A.A., Bogolitsyn K.G., Kosyakov D.S., Shpigun O.A. Application of analytical methods for estimating contamination of atmospheric air during launch of carrier rockets of different classes from the Plesetsk Cosmodrome. Inorg. Mater. 2010; 46: 1627. doi: 10.1134/S0020168510150057.

89. Yarmishko V.T., Yarmishko M.A. et al. Response of plants to highly toxic components of liquid-propellant rocket fuel. Russ. J. Ecol. 1999; 30(6): 435-9.

90. Romanov V.I., Romanova R.L. Risk factors of negative impact on objects of the environment upon accidents during launches of rocket-space hardware. Cosm. Res. 2003; 41(5): 494-501.

91. Villain J. A brief history of Baikonur. Acta Astronaut. 1996; 38(2): 131-8.

92. Shatalov D.V. The history of the beginning of the Russian Plesetsk cosmodrome. Hist. Rocket. Astronaut. 2003; 25: 137-44.

93. Gebhardt C. Space X Conducts Falcon 9 Test; AMOS-6 Investigation Narrows. NASA Spaceflight. 2016. Available at: https://www.nasaspaceflight.com/2016/10/spacex-prepares-upcomingfalcon-9-amos-6/

94. Davis J.S., Hayes-Conroy J.S., Jones V.M. Military pollution and natural purity: Seeing nature and knowing contamination in Vieques, Puerto Rico. Geo. J. 2007; 69: 165-79.

95. Schettler T.H. Reverberations of militarism: Toxic contamination, the environment, and health. Med. Glob. Surv. 1995; 2: 7-18.

96. Sibello Hernandez R.Y., Zucchetti M., Aumento F., Rodriguez Gual M., Cozzella M.I., Alonso Hernandez C.M. Measurement of plutonium pollution in sediments and algae in marine environment: Cienfuegos Bay and La Maddalena Islands. Fresen. Environ. Bull. 2011; 20: 802-9.

97. Strand P, Howard BJ, Aarkrog A, Balonov M, Tsaturov Y, Bewers J.M. et al. Radioactive contamination in the Arctic-sources, dose assessment and potential risks. J. Environ. Radioactiv. 2002; 60(1-2): 5-21.

98. Arkin W.A., Handler J. Naval Accidents: 1945-1988, Neptune Papers No.3. Washington D.C.: Greenpeace/lnstitute for Policy Studies; 1989.

99. Bodner M. Sunken soviet submarines threaten nuclear catastrophe in Russia's arctic. Moscow Times. 2014.

100. Joint Technical Commission of Experts. Report of the Joint Technical Commission of Experts. Project of Environmental Monitoring of Italian Inter-Force Test Range Based at «Salto di Quirra» (PISQ), Cagliari, Sardinia, Italy; 2010. Available online: http://silviadoneddu.files.

101. Li C., Srivastava R.K., Athar M. Biological and environmental hazards associated with exposure to chemical warfare agents: arsenicals. Ann. N. Y. Acad. Sci. 2016; 1378(1): 143-57. doi: 10.1111/nyas.13214.

102. Triolo L., Caffarelli V., Cagnetti P., Grandoni G., Signorini A., Bocola W., Gennaro V. Effects of bombing-related chimica pollution on environment and human health in Serbia and Kosovo. In: War Frauds / Ed. F. Marenco. Rome; 1999: 61-82.

103. Mishra S., Bharagava R.N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Hlth C: Environ. Carcinog. Ecotoxicol. Rev. 2016; 34(1): 1-32. doi: 10.1080/10590501.2015.1096883.

104. Xia W., Du X., Zheng T., Zhang B., Li Y., Bassig B.A. et al. A case-control study of prenatal thallium exposure and low birth weight in China. Environ. Hlth Perspect. 2016; 124(1): 164-9. doi: 10.1289/ehp.1409202.

105. Glass K.Y., Newsome C.R., Tchounwou P.B. Cytotoxicity and expression of c-fos, HSP70 and GADD45/153 proteins in human liver carcinoma (HepG2) cells exposed to dinitrotoluenes. Int. J. Environ. Res. Publ. Hlth, 2005; 2(2): 355-61.

106. Cocco P. Lessons from the «Quirra syndrome». Epidemiology? No, thanks. Epidemiol. Prev. 2012; 36: 41-4.

107. Biggeri A., Lagazio C., Catelan D., Pirastu R., Casson F., Terracini B. Environment and health in Sardinia risk areas. Epidemiol. Prev. 2006; 30: 1-96.

108. Cristaldi M., Foschi C., Szpunar G., Brini C., Marinelli F., Triolo L. Toxic emissions from a military test site in the territory of Sardinia, Italy. Int. J. Environ. Res. Publ. Hlth. 2013; 10(4):1631-46. doi: 10.3390/ijerph10041631.

109. Kouznetsova M., Huang X., Ma J., Lessner L. Carpenter D.O. Increased rate of hospitalization for diabetes and residential proximity of hazardous waste sites. Environ. Hlth Perspect. 2007; 115: 75-9.

110. Zucchetti M., Coraddu M., Littarru B., Cristaldi M. Environmental pollution and health effects in the Quirra Area, Sardinia (Italy). Fresenius Environ. Bull. 2011; 20(3): 810-7.

111. Fitzgerald G.J. Chemical warfare and medical response during World War I. Am. J. Publ. Hlth. 2008; 98(4): 611-25.

112. Hilt B. A world free of nuclear weapons, Tidsskr. Norske Laegeforen. 2015; 35(6): 520. doi: 10.4045/tidsskr.15.0236.


Для цитирования:


Петракис Д..., Вассилопулу Л..., Доцея А.О., Гофита Э..., Вукиник С..., Ракитский В.Н., Тсатсакис А.М. Обзор химического, биологического и ядерного оружия и его влияния на здоровье человека. Здравоохранение Российской Федерации. 2017;61(2):103-112. https://doi.org/10.18821/0044-197X-2017-61-2-103-112

For citation:


Petrakis D..., Vassilopoulou L..., Docea A.O., Gofita E..., Vucinic S..., Rakitskii V.N., Tsatsakis A.M. An overview update in chemical, biological and nuclear weapons and their effects in human health. Health care of the Russian Federation. 2017;61(2):103-112. (In Russ.) https://doi.org/10.18821/0044-197X-2017-61-2-103-112

Просмотров: 38


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0044-197X (Print)
ISSN 2412-0723 (Online)