Preview

Health care of the Russian Federation

Advanced search

Colostrum of cattle in the prevention of human infectious disease (literature review)

https://doi.org/10.47470/0044-197X-2022-66-2-160-167

Abstract

Colostrum (or immune milk) is the first milk that mammals produce after childbirth, and its composition differs markedly from milk obtained later in lactation. Colostrum is a rich source of immunoglobulins and other biologically active components.

The purpose of this literature review is to systematize research on methods of treatment and prevention of human infectious diseases using immunomodulatory and immunoprotective properties of colostrum. The open sources hosted in PubMed, Researchgate and eLibrary databases were studied.

The history of the use of colostrum from hyperimmunized cows as a treatment for human diseases can be traced back to the 1950s. Many studies on the use of colostrum have explored its potential in both the prevention and treatment of various infectious diseases.

The data obtained indicate the high efficiency of the use of cow colostrum and its components both for the prevention and treatment of infectious diseases. Colostrum is capable of producing a heterologous transfer of passive immunity. The immunization protocols used in the production of immune milk can be highly variable. This is especially true for the timing of immunization. Working on immunization protocols that expose animals to specific antigens can result in enhanced humoral immune responses in the mammary gland.

The most relevant is the search for ways to use immune milk as a means to contain the SARS-CoV-2 pandemic. The literature review provides a description of antimicrobial, immunomodulatory and growth-stimulating factors in bovine colostrum. Examples and descriptions of homologous and heterologous transmission of passive immunity are given.

Contribution of the authors:

Kuzmin S.V., Mayzel S.G., Alyoshkin V.A. — research concept and design.

Skripacheva A.I. — writing the text, compilation of the list of literature.

Rusakov V.N. — research concept, writing the text.

Sinitsyna O.O. — research concept and design, editing.

All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Acknowledgment. The study had no sponsorship.

Conflict of interest. The authors declare that they have no conflicts of interest.

Received: January 10, 2022

Accepted: March 11, 2022

Published: May 04, 2022

About the Authors

Sergey V. Kuzmin
F.F. Erisman Federal Research Center of Hygiene
Russian Federation


Anna I. Skripacheva
F.F. Erisman Federal Research Center of Hygiene
Russian Federation


Vladimir N. Rusakov
F.F. Erisman Federal Research Center of Hygiene
Russian Federation

MD, Ph.D., leading researcher of the Department of health and safe food of the F.F. Erisman Federal Research Center of Hygiene, Mytishchi, 141014, Moscow Region, Russian Federation.

e-mail: rusakovvn@fferisman.ru



Oxana O. Sinitsyna
F.F. Erisman Federal Research Center of Hygiene
Russian Federation


Sergey G. Myzel
Pobeda-1 LLC
Russian Federation


Vladimir A. Alyoshkin
Moscow Research Institute of Epidemiology and Microbiology named after G.N. Gabrichevsky
Russian Federation


References

1. Kokryakov V.N. Essays on Innate Immunity [Ocherki o vrozhdennom immunitete]. St. Petersburg: Nauka; 2006. (in Russian)

2. Fedorov Yu.N., Klyukvina V.I., Bogomolova O.A., Romanenko M.N. Colostral immunity and immunoprophylaxis of newborn calves diseases. Veterinariya. 2016; (5): 3–7. (in Russian)

3. Sergeev V.A., Nepoklonov E.A., Aliper T.I. Viruses and Viral Vaccines [Virusy i virusnye vaktsiny]. Moscow: Biblionika; 2007. (in Russian)

4. Khaitov R.M., Ignat’ev G.A., Sidorovich I.G. Immunology. Norm and Pathology [Immunologiya. Norma i patologiya]. Moscow: Meditsina; 2010. (in Russian)

5. Koryakina L.P. Features of cellular structure of the colostrums of cows in the first days of the lactation. Dostizhenie nauki i tekhniki APK. 2011; (2): 54–5. (in Russian)

6. Malashko V.V., Kuznetsov N.A. Colostrum Immunoglobulins [Immunoglobuliny moloziva]. Grodno; 2010. (in Russian)

7. Skopichev V.G., Yakovlev V.G. Private Physiology. Part 2. Physiology of Productive Animals [Chastnaya fiziologiya. Chast’ 2. Fiziologiya produktivnykh zhivotnykh]. Moscow: Kolos; 2008. (in Russian)

8. Bjornvad C.R., Thymann T., Deutz N.E., et al. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 2008; 295(5): G1092–103. https://doi.org/10.1152/ajpgi.00414.2007

9. Campbell B., Petersen W.E. Immune milk-A historical survey. Dairy Sci. Abstr. 1963; 25, 345–58.

10. Lascelles A.K. A review of the literature on some aspects of immune milk. Dairy Sci. Abstr. 1963; 25: 359–64.

11. Alisky J. Bovine and human-derived passive immunization could help slow a future avian influenza pandemic. Med. Hypotheses. 2009; 72(1): 74–5. https://doi.org/10.1016/j.mehy.2008.08.016

12. Yolken R.H., Losonsky G.A., Vonderfecht S., Leister F., Wee S.B. Antibody to human rotavirus in cow’s milk. N. Engl. J. Med. 1985; 312(10): 605–10. https://doi.org/10.1056/nejm198503073121002

13. Li-Chan E., Kummer A., Losso J.N., Nakai S. Survey of immunoglobulin G content and antibody specificity in cow’s milk from British Columbia. Food Agric. Immunol. 1994; 6(4): 443–51.

14. Stelwagen K., Carpenter E., Haigh B., Hodgkinson A., Wheeler T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009; 87(13 Suppl.): 3–9. https://doi.org/10.2527/jas.2008-1377

15. Hurley W.L., Theil P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients. 2011; 3(4): 442–74. https://doi.org/10.3390/nu3040442

16. Pakkanen R., Aalto J. Growth factors and antimicrobial factors of bovine colostrum. Int. Dairy J. 1997; 7(5): 285–97.

17. Izumi H., Kosaka N., Shimizu T., Sekine K., Ochiya T., Takase M. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J. Dairy Sci. 2012; 95(9): 4831–41. https://doi.org/10.3168/jds.2012-5489

18. Hata T., Murakami K., Nakatani H., Yamamoto Y., Matsuda T., Aoki N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem. Biophys. Res. Commun. 2010; 396(2): 528–33. https://doi.org/10.1016/j.bbrc.2010.04.135

19. Sun Q., Chen X., Yu J., Zen K., Zhang C.Y., Li L. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell. 2013; 4(3): 197–210. https://doi.org/10.1007/s13238-013-2119-9

20. Gopal P.K., Gill H.S. Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 2000; 84(Suppl. 1): S69–S74. https://doi.org/10.1017/s0007114500002270

21. Purup S., Vestergaard M., Pedersen O., Sejrsen K. Biological activity of bovine milk on proliferation of human intestinal cells. J. Dairy Res. 2007; 74(1): 58–65. https://doi.org/10.1017/s0022029906002093

22. Playford R.J., MacDonald C.E., Johnson W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000; 72(1): 5–14. https://doi.org/10.1093/ajcn/72.1.5

23. Sacerdote P., Mussano F., Franchi S., Panerai A.E., Bussolati G., Carossa S., et al. Biological components in a standardized derivative of bovine colostrum. J. Dairy Sci. 2013; 96(3): 1745–54. https://doi.org/10.3168/jds.2012-5928

24. Elfstrand L., Lindmark-Månsson H., Paulsson M., Nyberg L., Åkesson B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002; 12(11): 879–87.

25. Roos N., Mahe S., Benamouzig R., Sick H., Rautureau J., Tomé D. 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J. Nutr. 1995; 125(5): 1238–44. https://doi.org/10.1093/jn/125.5.1238

26. Kelly C.P., Chetham S., Keates S., Bostwick E.F., Roush A.M., Castagliuolo I., et al. Survival of anti-Clostridium difficile bovine immunoglobulin concentrate in the human gastrointestinal tract. Antimicrob. Agents Chemother. 1997; 41(2): 236–41. https://doi.org/10.1128/aac.41.2.236

27. Lilius E.M., Marnila P. The role of colostral antibodies in prevention of microbial infections. Curr. Opin. Infect. Dis. 2001; 14(3): 295–300. https://doi.org/10.1097/00001432-200106000-00008

28. Glass R.I., Svennerholm A.M., Stoll B.J., Khan M.R., Hossain K.M.B., Huq M.I., et al. Protection against cholera in breast-fed children by antibodies in breast milk. N. Engl. J. Med. 1983; 398(23): 1389–92. https://doi.org/10.1056/nejm198306093082304

29. Ruiz-Palacios G.M., Calva J.J., Pickering L.K., Lopez-Vidal Y., Volkow P., Pezzarossi H., et al. Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J. Pediatr. 1990; 116(5): 707–13. https://doi.org/10.1016/s0022-3476(05)82652-6

30. Moon H.W., Bunn T.O. Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. Vaccine. 1993; 11(2): 213–20. https://doi.org/10.1016/0264-410x(93)90020-x

31. Saif L.J., Smith K.L., Landmeier B.J., Bohl E.H., Theil K.W., Todhunter D.A. Immune response of pregnant cows to bovine rotavirus immunization. Am. J. Vet. Res. 1984; 45(1): 49–58.

32. Lanza I., Shoup D.I., Saif L.J. Lactogenic immunity and milk antibody isotypes to transmissible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy. Am. J. Vet. Res. 1995; 56(6): 739–48.

33. Wilson M.R., Brown P., Svendsen J. Immunity to Escherichia coli in pigs: Antibody secretion by the mammary gland after intramammary or intramuscular vaccination with E. coli vaccine. Can. J. Comp. Med. 1972; 36(1): 44–8.

34. Kortbeek-Jacobs J.M.C., van Kooten P.J.S., van der Donk J.A., van Dijk J.E., Rutten V.P. The effect of oral immunization on the population of lymphocytes migrating to the mammary gland of the sow. Vet. Microbiol. 1984; 9(3): 287–99. https://doi.org/10.1016/0378-1135(84)90046-4

35. Parreño V., Béjar C., Vagnozzi A., Barrandeguy M., Costantini V., Craig M.I., et al. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 2004; 100(1-2): 7–24. https://doi.org/10.1016/j.vetimm.2004.02.007

36. Snodgrass D.R., Campbell I., Mwenda J.M., Chege G., Suleman M.A., Morein B., et al. Stimulation of rotavirus IgA, IgG and neutralizing antibodies in baboon milk by parenteral vaccination. Vaccine. 1995; 13(4): 408–13. https://doi.org/10.1016/0264-410x(95)98265-c

37. Shahid N.S., Steinhoff M.C., Roy E., Begum T., Thompson C.M., Siber G.R. Placental and breast transfer of antibodies after maternal immunization with polysaccharide meningococcal vaccine: а randomized, controlled evaluation. Vaccine. 2002; 20(17-18): 2404–9. https://doi.org/10.1016/s0264-410x(02)00061-038

38. Butler J.E., Kehrli M.E. Jr. Immunoglobulins and immunocytes in the mammary gland and its secretions. In: Mestecky J., Lamm M., Strober W., Bienenstock J., McGhee J.R., Mayer L., eds. Mucosal Immunology. Burlington, MA: Elsevier Academic Press; 2005.

39. Schaller J.P., Saif L.J., Cordle C.T., Candler E. Jr., Winship T.R., Smith K.L. Prevention of human rotavirus-induced diarrhea in gnotobiotic piglets using bovine antibody. J. Infect. Dis. 1992; 165(4): 623–30. https://doi.org/10.1093/infdis/165.4.623

40. Jenkins M.C., O’Brien C., Trout J., Guidry A., Fayer R. Hyperimmune bovine colostrum specific for recombinant Cryptosporidium parvum antigen confers partial protection against cryptosporidiosis in immunosuppressed adult mice. Vaccine. 1999; 17(19): 2453–60. https://doi.org/10.1016/s0264-410x(98)00369-7

41. Huang X.H., Chen L., Gao W., Zhang W., Chen S.J., Xu L.B., et al. Specific IgG activity of bovine immune milk against diarrhea bacteria and its protective effects on pathogen-infected intestinal damages. Vaccine. 2008; 26(47): 5973–80. https://doi.org/10.1016/j.vaccine.2008.08.040

42. Ebina T., Sato A., Umezu K., Ishida N., Ohyama S., Oizumi A., et al. Prevention of rotavirus infection by cow colostrum containing antibody against human rotavirus. Lancet. 1983; 322(8357): 1029–30. https://doi.org/10.1016/S0140-6736(83)91016-4

43. Ebina T., Sato A., Umezu K., Ishida N., Ohyama S., Oizumi A., et al. Prevention of rotavirus infection by oral administration of cow colostrum containing antihumanrotavirus antibody. Med. Microbiol. Immunol. 1985; 174(4): 177–85. https://doi.org/10.1007/bf02123694

44. Hilpert H., Brussow H., Mietens C., Sidoti J., Lerner L., Werchau H. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J. Infect. Dis. 1987; 156(1): 158–66. https://doi.org/10.1093/infdis/156.1.158

45. Mitra A.K., Mahalanabis D., Ashraf H., Unicomb L., Eeckels R., Tzipori S. Hyperimmune cow colostrum reduces diarrhoea due to rotavirus: A double-blind, controlled clinical trial. Acta Paediatr. 1995; 84(9): 996–1001. https://doi.org/10.1111/j.1651-2227.1995.tb13814.x

46. Davidson G.P., Whyte P.B.D., Daniels E., Franklin K., Nunan H., McCloud P.I., et al. Passive immunization of children with bovine colostrum containing antibodies to human rotavirus. Lancet. 1989; 2(8665): 709–12. https://doi.org/10.1016/s0140-6736(89)90771-x

47. Civra A., Altomare A., Francese R., Donalisio M., Aldini G., Lembo D. Colostrum from cows immunized with a veterinary vaccine against bovine rotavirus displays enhanced in vitro anti-human rotavirus activity. J. Dairy Sci. 2019; 102(6): 4857–69. https://doi.org/10.3168/jds.2018-16016

48. Ng W.C., Wong V., Muller B., Rawlin G., Brown L.E. Prevention and treatment of influenza with hyperimmune bovine colostrum antibody. PLoS One. 2010; 5(10): e13622. https://doi.org/10.1371/journal.pone.0013622

49. Huppertz H.I., Rutkowski S., Busch D., Eisebit R., Lissner R., Karch H. Bovine colostrum ameliorates diarrhea in infection with diarrheagenic Escherichia coli, Shiga toxin-producing E. coli, and E. coli expressing intimin and hemolysin. J. Pediatr. Gastroenterol. Nutr. 1999; 29(4): 452–6. https://doi.org/10.1097/00005176-199910000-00015

50. Struff W.G., Sprotte G. Bovine colostrum as a biologic in clinical medicine; a review. Part I: Biotechnological standards, pharmacodynamic and pharmacokinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther. 2007; 45(4): 193–202. https://doi.org/10.5414/cpp45193

51. Struff W.G., Sprotte G. Bovine colostrum as a biologic in clinical medicine; a review-Part II: Clinical studies. Int. J. Clin. Pharmacol. Ther. 2008; 46(5): 211–25. https://doi.org/10.5414/cpp46211

52. Stephan W., Dichtelmuller H., Lissner R. Antibodies from colostrum in oral immunotherapy. J. Clin. Chem. Clin. Biochem. 1990; 28(1): 19–23.

53. Ashraf H., Mahalanabis D., Mitra A.K., Tzipori S., Fuchs G.J. Hyperimmune bovine colostrum in the treatment of shigellosis in children: A double-blind, randomized, controlled trial. Acta Paediatr. 2001; 90(12): 1373–8. https://doi.org/10.1080/08035250152708743

54. Brinkworth G., Buckley J. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur. J. Nutr. 2003; 42(4): 228–32. https://doi.org/10.1007/s00394-003-0410-x

55. Shing C.M., Peake J., Suzuki K., Okutsu M., Pereira R., Stevenson L., et al. Effects of bovine colostrum supplementation on immune variables in highly trained cyclists. J. Appl. Physiol. (1985). 2007; 102(3): 1113–22. https://doi.org/10.1152/japplphysiol.00553.2006

56. Crooks C.V., Wall C.R., Cross M.L., Rutherfurd-Markwick K.J. The effect of bovine colostrum supplementation on salivary IgA in distance runners. Int. J. Sport. Nutr. Exerc. Metab. 2006; 16(1): 47–64. https://doi.org/10.1123/ijsnem.16.1.47

57. Crooks C.V., Wall C.R., Cross M.L., Rutherfurd-Markwick K.J. Effect of bovine colostrum supplementation on respiratory tract mucosal defenses in swimmers. Int. J. Sport. Nutr. Exerc. Metab. 2010; 20(3): 224–35. https://doi.org/10.1123/ijsnem.20.3.224

58. Patiroglu T., Kondolot M. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. Clin. Respir. J. 2013; 7(1): 21–6. https://doi.org/10.1111/j.1752-699X.2011.00268.x

59. Huppertz H.I., Rutkowski S., Busch D.H., Eisebit R., Lissner R., Karch H. Bovine colostrum ameliorates diarrhea in infection with diarrheagenic Escherichia coli, shiga toxin-producing E. coli, and E. coli expressing intimin and hemolysin. J. Pediatr. Gastroenterol. Nutr. 1999; 29(4): 452–6. https://doi.org/10.1097/00005176-199910000-00015

60. He F., Tuomola E., Arvilommi H., Salminen S. Modulation of human humoral immune response through orally administered bovine colostrum. FEMS Immunol. Med. Microbiol. 2001; 31(2): 93–6. https://doi.org/10.1111/j.1574-695x.2001.tb00504.x

61. Wolvers D.A., van Herpen-Broekmans W.M., Logman M.H., van der Wielen R.P., Albers R. Effect of a mixture of micronutrients, but not of bovine colostrum concentrate, on immune function parameters in healthy volunteers: a randomized placebo-controlled study. Nutr. J. 2006; 5: 28. https://doi.org/10.1186/1475-2891-5-28

62. Mikic I.M., Davidovic B.L., Matijevic J., Prpić Mehičić G., Jukić Krmek S. A pilot study of effects of ecolostrum on salivary IgA. Acta Stomatol. Croat. 2012; 46(2): 111–6.

63. Jensen G.S., Patel D., Benson K.F. A novel extract from bovine colostrum whey supports innate immune functions. II. Rapid changes in cellular immune function in humans. Prev. Med. 2012; 54(Suppl.): S124–9. https://doi.org/10.1016/j.ypmed.2012.01.004

64. Appukutty M., Radhakrishnan A.K., Ramasamy K., Bakar A., Majeed A., Noor M.I., et al. Modulation of interferon gamma response through orally administered bovine colostrum in active adolescent boys. Biomed. Res. 2011; 22(1): 18–22.

65. Mietens C., Keinhorst H., Hilpert H., Gerber H., Amster H., Pahud J.J. Treatment of infantile E. coli gastroenteritis with specific bovine anti-E. coli milk immunoglobulins. Eur. J. Pediatr. 1979; 132(4): 239–52. https://doi.org/10.1007/bf00496847

66. Tacket C.O., Losonsky G., Link H., Hoang Y., Guesry P., Hilpert H., et al. Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli. N. Engl. J. Med. 1988; 318(19): 1240–3. https://doi.org/10.1056/nejm198805123181904

67. Loimaranta V., Carlén A., Olsson J., Tenovuo J., Syvaoja E.L., Korhonen H. Concentrated bovine colostral whey proteins from Streptococcus mutans/Strep. sorbinus immunized cows inhibit the adherence of Strep. mutans and promote the aggregation of mutans streptococci. J. Dairy Res. 1998; 65(4): 599–607. https://doi.org/10.1017/s0022029998003069

68. Loimaranta V., Tenovuo J., Virtanen S., Marnila P., Syvaoja E.L., Tupasela T., et al. Generation of bovine immune colostrum against Streptococcus mutans and Streptococcus sobrinus and its effect on glucose uptake and extracellular polysaccharide formation by mutans streptococci. Vaccine. 1997; 15(11): 1261–8. https://doi.org/10.1016/s0264-410x(97)00027-3

69. Oho T., Shimazaki Y., Mitoma M., Yoshimura M., Yamashita Y., Okano K., et al. Bovine milk antibodies against cell surface protein antigen PAc-glucosyltransferase fusion protein suppress cell adhesion and alter glucan synthesis of Streptococcus mutans. J. Nutr. 1999; 129(10): 1836–41. https://doi.org/10.1093/jn/129.10.1836

70. Tzipori S., Roberton D., Chapman C. Remission of diarrhoea due to cryptosporidiosis in an immunodeficient child treated with hyperimmune bovine colostrum. Br. Med. J. (Clin. Res. Ed.) 1986; 293(6557): 1276–7. https://doi.org/10.1136/bmj.293.6557.1276

71. Kelly C.P., Pothoulakis C., Vavva F., Castagliuolo I., Bostwick E.F., O’Keane J.C., et al. Anti-Clostridium difficile bovine immunoglobulin concentrate inhibits cytotoxicity and enterotoxicity of C. difficile toxins. Antimicrob. Agents Chemother. 1996; 40(2): 373–9. https://doi.org/10.1128/aac.40.2.373

72. Hodgkinson A.J., Cannon R.D., Holmes A.R., Fischer F.J., Willix-Payne D.J. Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J. Dairy Res. 2007; 74(3): 269–75. https://doi.org/10.1017/s0022029907002567

73. Shkreta L., Talbot B.G., Diarra M.S., Lacasse P. Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows. Vaccine. 2004; 23(1): 114–26. https://doi.org/10.1016/j.vaccine.2004.05.002

74. Castagliuolo I., Piccinini R., Beggiao E., Palu G., Mengoli C., Ditadi F., et al. Mucosal genetic immunization against four adhesions protects against Staphylococcus aureus-induced mastitis in mice. Vaccine. 2006; 24(20): 4393–402. https://doi.org/10.1016/j.vaccine.2006.02.055

75. Dorosko S.M., Ayres S.L., Connor R.L. Induction of HIV-1 MPR(649-684)-specific IgA and IgG antibodies in caprine colostrum using a peptide-based vaccine. Vaccine. 2008; 26(42): 5416–22. https://doi.org/10.1016/j.vaccine.2008.07.079

76. O’Brien C.N., Guidry A.J., Douglass L.W., Westhoff D.C. Immunization with Staphylococcus aureus lysate incorporated into microspheres. J. Dairy Sci. 2001; 84(8): 1791–9. https://doi.org/10.3168/jds.s0022-0302(01)74617-6

77. Liu G.L., Wang J.Q., Bu D.P., Cheng J.B., Zhang C.G., Wei H.Y., et al. Specific immune milk production of cows implanted with antigen-release devices. J. Dairy Sci. 2009; 92(1): 100–8. https://doi.org/10.3168/jds.2008-1114

78. Toledo J.R., Sanchez O., Montesino R., Farnos O., Rodriguez M.P., Alfonso P., et al. Highly protective E2-CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats. J. Biotechnol. 2008; 133(3): 370–6. https://doi.org/10.1016/j.jbiotec.2007.09.014

79. Rump J.A., Arndt R., Arnold A., Bendick C., Dichtelmüller H., Franke M., et al. Treatment of diarrhoea in human immunodeficiency virus-infected patients with immunoglobulins from bovine colostrum. Clin. Investig. 1992; 70(7): 588–94. https://doi.org/10.1007/bf00184800

80. Plettenberg A., Stoehr A., Stellbrink H.J., Albrecht H., Meigel W. A preparation from bovine colostrum in the treatment of HIV-positive patients with chronic diarrhea. Clin. Investig. 1993; 71(1): 42–5. https://doi.org/10.1007/bf00210962

81. Lund P., Sangild P.T., Aunsholt L., Hartmann B., Holst J.J., Mortensen J., et al. Randomised controlled trial of colostrum to improve intestinal function in patients with short bowel syndrome. Eur. J. Clin. Nutr. 2012; 66(9): 1059–65. https://doi.org/10.1038/ejcn.2012.93

82. Kerksick C.M., Rasmussen C., Lancaster S., Starks M., Smith P., Melton C., et al. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition. 2007; 23(9): 647–56. https://doi.org/10.1016/j.nut.2007.06.015

83. Playford R.J., MacDonald C.E., Calnan D.P., Floyd D.N., Podas T., Johnson W., et al. Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin. Sci. (Lond.). 2001; 100(6): 627–33.

84. Florén C.H., Chinenye S., Elfstrand L., Hagman C., Ihse I. ColoPlus, a new product based on bovine colostrum, alleviates HIV-associated diarrhoea. Scand. J. Gastroenterol. 2006; 41(6): 682–6. https://doi.org/10.1080/00365520500380817

85. Bolke E., Jehle P.M., Hausmann F., Däubler A., Wiedeck H., Steinbach G., et al. Preoperative oral application of immunoglobulin-enriched colostrum milk and mediator response during abdominal surgery. Shock. 2002; 17(1): 9–12. https://doi.org/10.1097/00024382-200201000-00002

86. Panahi Y., Falahi G., Falahpour M., Moharamzad Y., Khorasgani M.R., Beiraghdar F., et al. Bovine colostrum in the management of nonorganic failure to thrive: a randomized clinical trial. J. Pediatr. Gastroenterol. Nutr. 2010; 50(5): 551–4. https://doi.org/10.1097/mpg.0b013e3181b91307

87. Buckley J.D., Butler R.N., Southcott E., Brinkworth G.D. Bovine colostrum supplementation during running training increases intestinal permeability. Nutrients. 2009; 1(2): 224–34. https://doi.org/10.3390/nu1020224

88. Hofman Z., Smeets R., Verlaan G., Lugt Rv., Verstappen P.A. The effect of bovine colostrum supplementation on exercise performance in elite field hockey players. Int. J. Sport Nutr. Exerc. Metab. 2002; 12(4): 461–9. https://doi.org/10.1123/ijsnem.12.4.461

89. Davis P.F., Greenhill N.S., Rowan A.M., Schollum L.M. The safety of New Zealand bovine colostrum: nutritional and physiological evaluation in rats. Food Chem. Toxicol. 2007; 45(2): 229–36. https://doi.org/10.1016/j.fct.2006.07.034

90. Kaducu F.O., Okia S.A., Upenytho G., Elfstrand L., Florén C.H. Effect of bovine colostrum-based food supplement in the treatment of HIV-associated diarrhea in Northern Uganda: a randomized controlled trial. Indian J. Gastroenterol. 2011; 30(6): 270–6. https://doi.org/10.1007/s12664-011-0146-0


Review

For citations:


Kuzmin S.V., Skripacheva A.I., Rusakov V.N., Sinitsyna O.O., Myzel S.G., Alyoshkin V.A. Colostrum of cattle in the prevention of human infectious disease (literature review). Health care of the Russian Federation. 2022;66(2):160-167. (In Russ.) https://doi.org/10.47470/0044-197X-2022-66-2-160-167

Views: 2795


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0044-197X (Print)
ISSN 2412-0723 (Online)