Preview

Health care of the Russian Federation

Advanced search

Promising measures to reduce the mortality in Russia: an analytical review

https://doi.org/10.47470/0044-197X-2021-65-6-573-580

Abstract

The purpose of the study was to identify promising measures to reduce mortality in Russia.

Methods used included analysis of systematic reviews from PubMed, Web of Science, Scopus, and Google Scholar. 

Results. Promising measures for reducing mortality in Russia include promoting healthy behaviour (tobacco control, alcohol control, support for healthy diet, physical activity) and preventing death due to external causes. It is necessary to increase the effectiveness of disease management, including arterial hypertension, hypercholesterolemia, diabetes mellitus, cardiovascular accidents, hepatitis C, HIV. This could require intensifying digital transformation of health care, implementing modern teamwork approaches to the patient’s treatment and follow-up with greater involvement of nurses and other personnel. In terms of screening, it is essential to expand coverage and introduce modern, effective screening methods for colorectal cancer, cervical cancer, and neonatal screening. It is necessary to expand vaccination against Covid-19, vaccination of the elderly from Pneumococcus, and teenagers from HPV. Prevention of mortality from external causes should include sets of measures targeted at the prevention of suicides, traffic accidents, fires, drownings, etc., in addition to alcohol control measures. Finally, increasing health care financing, including medication provision, can bring additional years of life.

Conclusions. Russia has significant potential to implement new measures to reduce the mortality.

About the Authors

Olga S. Kobyakova
Federal Research Institute for Health Organization and Informatics
Russian Federation


Vladimir I. Starodubov
Federal Research Institute for Health Organization and Informatics
Russian Federation


Daria A. Khaltourina
Federal Research Institute for Health Organization and Informatics
Russian Federation

MD, PhD., Head of the Department of risk factors prevention and communication technologies in healthcare of the Federal Research Institute for Health Organization and Informatics, Moscow, 127254, Russian Federation.

e-mail: khaltourina@mednet.ru



Viktor A. Zykov
Federal Research Institute for Health Organization and Informatics
Russian Federation


Tatiana S. Zubkova
Federal Research Institute for Health Organization and Informatics
Russian Federation


Elena S. Zamiatnina
Federal Research Institute for Health Organization and Informatics
Russian Federation


References

1. Arkhangel’skiy V.N., Bozhevolnov Yu.V., Goldstoun Dzh., Zvereva N.V., Zin’kina Yu.V., Korotaev A.V., et al. Too Late in 10 years. Demographic Policy of the Russian Federation: Scenarios and Challenges [Cherez 10 let budet pozdno. Demograficheskaya politika Rossiyskoy Federatsii: stsenarii i vyzovy]. Moscow; 2014. Available at: https://inoe.org/content/report.pdf (in Russian)

2. WHO. Tackling NCDs: ‘Best buys’ and other recommended interventions for the prevention and control of noncommunicable diseases; 2017. Available at: https://apps.who.int/iris/handle/10665/259232

3. Ulumbekova G.E. The program of urgent measures in the healthcare sector of the Russian Federation to overcome the systemic crisis. Orgzdrav: novosti, mneniya, obuchenie. Vestnik VShOUZ. 2020; 6(1): 4–16. https://doi.org/10.24411/2411-8621-2020-11001 (in Russian)

4. Markes P.V. World Bank. Dying Too Young: Addressing Premature Mortality and Ill Health Due to Non-Communicable Diseases and Injuries in the Russian Federation [Rano umirat’. Problemy vysokogo urovnya zabolevaemosti i prezhdevremennoy smertnosti ot neinfektsionnykh zabolevaniy i travm v Rossiyskoy Federatsii i puti ikh resheniya]. Moscow: Vsemirnyy bank; 2005. Available at: https://documents1.worldbank.org/curated/en/201881468296681271/pdf/323770SR0RUSSI00Box338915B00PUBLIC0.pdf (in Russian)

5. Herttua K., Mäkelä P., Martikainen P. Minimum prices for alcohol and educational disparities in alcohol-related mortality. Epidemiology. 2015; 26(3): 337–43. https://doi.org/10.1097/EDE.0000000000000260

6. Wilkinson C., Livingston M., Room R. Impacts of changes to trading hours of liquor licences on alcohol-related harm: a systematic review 2005-2015. Public Health Res. Pract. 2016; 26(4): 2641644. https://doi.org/10.17061/phrp2641644

7. Brachowicz N., Castello J.V. Is changing the minimum legal drinking age an effective policy tool? Health Econ. 2019; 28(12): 1483–90. https://doi.org/10.1002/hec.3955

8. Levy D.T., Tam J., Kuo C., Fong G.T., Chaloupka F. The Impact of Implementing Tobacco Control Policies: The 2017 Tobacco Control Policy Scorecard. J. Public Health Manag. Pract. 2018; 24(5): 448–57. https://doi.org/10.1097/PHH.0000000000000780

9. Shankleman M., Sykes C., Mandeville K.L., Di Costa S., Yarrow K. Standardised (plain) cigarette packaging increases attention to both text-based and graphical health warnings: experimental evidence. Public Health. 2015; 129(1): 37–42. https://doi.org/10.1016/j.puhe.2014.10.019

10. Finan L.J., Lipperman-Kreda S., Abadi M., Grube J.W., Kaner E., Balassone A., et al. Tobacco outlet density and adolescents’ cigarette smoking: a meta-analysis. Tob. Control. 2019; 28(1): 27–33. https://doi.org/10.1136/tobaccocontrol-2017-054065

11. Bleich S.N., Economos C.D., Spiker M.L., Vercammen K.A., VanEpps E.M., Block J.P., et al. A systematic review of calorie labeling and modified calorie labeling interventions: impact on consumer and restaurant behavior. Obesity. 2017; 25(12): 2018–44. https://doi.org/10.1002/oby.21940

12. Sacco J., Lillico H.G., Chen E., Hobin E. The influence of menu labelling on food choices among children and adolescents: a systematic review of the literature. Perspect. Public Health. 2017; 137(3): 173–81. https://doi.org/10.1177/1757913916658498

13. Hobin E., Bollinger B., Sacco J., Liebman E., Vanderlee L., Zuo F., et al. Consumers’ response to an on-shelf nutrition labelling system in supermarkets: evidence to inform policy and practice. Milbank Q. 2017; 95(3): 494–534. https://doi.org/10.1111/1468-0009.12277

14. Hyseni L., Elliot-Green A., Lloyd-Williams F., Kypridemos C., O’Flaherty M., McGill R., et al. Systematic review of dietary salt reduction policies: Evidence for an effectiveness hierarchy? PLoS One. 2017; 12(5): e0177535. https://doi.org/10.1371/journal.pone.0177535

15. Shaw S.C., Ntani G., Baird J., Vogel C.A. A systematic review of the influences of food store product placement on dietary-related outcomes. Nutr. Rev. 2020; 78(12): 1030–45. https://doi.org/10.1093/nutrit/nuaa024

16. Gittelsohn J., Trude A.C.B., Kim H. Pricing strategies to encourage availability, purchase, and consumption of healthy foods and beverages: a systematic review. Prev. Chronic Dis. 2017; 14: E107. https://doi.org/10.5888/pcd14.170213

17. FAO. Promoting healthy diets through nutrition education and changes in the food environment: an international review of actions and their effectiveness. Rome: FAO; 2013. Available at: https://www.fao.org/docrep/017/i3235e/i3235e.pdf

18. Zimmermann M.B. The effects of iodine deficiency in pregnancy and infancy. Paediatr. Perinat. Epidemiol. 2012; 26(1): 108–17. https://doi.org/10.1111/j.1365-3016.2012.01275.x

19. Zimmermann M.B., Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res. 2015; 8: 8. https://doi.org/10.1186/s13044-015-0020-8

20. Lamming L., Pears S., Mason D., Morton K., Bijker M., Sutton S., et al. What do we know about brief interventions for physical activity that could be delivered in primary care consultations? A systematic review of reviews. Prev. Med. 2017; 99: 152–63. https://doi.org/10.1016/j.ypmed.2017.02.017

21. Mölenberg F.J.M., Panter J., Burdorf A., van Lenthe F.J. A systematic review of the effect of infrastructural interventions to promote cycling: strengthening causal inference from observational data. Int. J. Behav. Nutr. Phys. Act. 2019; 16(1): 93. https://doi.org/10.1186/s12966-019-0850-1

22. Hipp J.A., Aaron Hipp J., Dodson E.A., Lee J.A., Marx C.M., Yang L., et al. Mixed methods analysis of eighteen worksite policies, programs, and environments for physical activity. Int. J. Behav. Nutr. Phys. Act. 2017; 14(1): 79. https://doi.org/10.1186/s12966-017-0533-8

23. Laine J., Kuvaja-Köllner V., Pietilä E., Koivuneva M., Valtonen H., Kankaanpää E. Cost-effectiveness of population-level physical activity interventions: a systematic review. Am. J. Health Promot. 2014; 29(2): 71–80. https://doi.org/10.4278/ajhp.131210-lit-622

24. Baker P.R.A., Francis D.P., Soares J., Weightman A.L., Foster C. Community wide interventions for increasing physical activity. Cochrane Database Syst. Rev. 2015; 1: CD008366. https://doi.org/10.1002/14651858.CD008366.pub3

25. de Martel C., Plummer M., Vignat J., Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 2017; 141(4): 664–70. https://doi.org/10.1002/ijc.30716

26. Lei J., Ploner A., Elfström K.M., Wang J., Roth A., Fang F., et al. HPV vaccination and the risk of invasive cervical cancer. N. Engl. J. Med. 2020; 383(14): 1340–8. https://doi.org/10.1056/NEJMoa1917338

27. Baldo V., Cocchio S., Gallo T., Furlan P., Romor P., Bertoncello C., et al. Pneumococcal conjugated vaccine reduces the high mortality for community-acquired pneumonia in the elderly: an Italian regional experience. PLoS One. 2016; 11(11): e0166637. https://doi.org/10.1371/journal.pone.0166637

28. Marques Antunes M., Duarte G.S., Brito D., Borges M., Costa J., Ferreira J.J., et al. Pneumococcal vaccination in adults at very high risk or with established cardiovascular disease: systematic review and meta-analysis. Eur. Heart J. Qual. Care Clin. Outcomes. 2021; 7(1): 97–106. https://doi.org/10.1093/ehjqcco/qcaa030

29. Zhang J., Cheng Z., Ma Y., He C., Lu Y., Zhao Y., et al. Effectiveness of screening modalities in colorectal cancer: a network meta-analysis. Clin. Colorectal Cancer. 2017; 16(4): 252–63. https://doi.org/10.1093/ehjqcco/qcaa030

30. Danese E., Montagnana M., Lippi G. Combining old and new strategies for colorectal cancer screening. Ann. Transl. Med. 2020; 8(4): 67. https://doi.org/10.21037/atm.2019.11.135

31. Jansen E.E.L., Zielonke N., Gini A., Anttila A., Segnan N., Vokó Z. EU-TOPIA consortium. Effect of organised cervical cancer screening on cervical cancer mortality in Europe: a systematic review. Eur. J. Cancer. 2020; 127: 207–23. https://doi.org/10.1016/j.ejca.2019.12.013

32. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition. Geneva; 2021. Available at: https://www.who.int/publications/i/item/9789240030824

33. WHO. Screening programmes: a short guide. Increase effectiveness, maximize benefits and minimize harm. WHO/Europe: Copenhagen, 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/330829/9789289054782-eng.pdf

34. Beauchamp K.A., Taber K.A., Muzzey D. Clinical impact and cost-effectiveness of a 176-condition expanded carrier screen. Genet. Med. 2019; 21(9): 1948–57. https://doi.org/10.1038/s41436-019-0455-8

35. Ettehad D., Emdin C.A., Kiran A., Anderson S.G., Callender T., Emberson J., et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016; 387(10022): 957–67. https://doi.org/10.1016/S0140-6736(15)01225-8

36. Tsapas A., Avgerinos I., Karagiannis T., Malandris K., Manolopoulos A., Andreadis P., et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis. Ann. Intern. Med. 2020; 173(4): 278–86. https://doi.org/10.7326/M20-0864

37. Ponce O.J., Larrea-Mantilla L., Hemmingsen B., Serrano V., Rodriguez-Gutierrez R., Spencer-Bonilla G., et al. Lipid-lowering agents in older individuals: a systematic review and meta-analysis of randomized clinical trials. J. Clin. Endocrinol. Metab. 2019; 104(5): 1585–94. https://doi.org/10.1210/jc.2019-00195

38. Chaiyasothi T., Nathisuwan S., Dilokthornsakul P., Vathesatogkit P., Thakkinstian A., Reid C., et al. Effects of non-statin lipid-modifying agents on cardiovascular morbidity and mortality among statin-treated patients: a systematic review and network meta-analysis. Front. Pharmacol. 2019; 10: 547. https://doi.org/10.3389/fphar.2019.00547

39. Ma T.T., Wong I.C.K., Man K.K.C., Chen Y., Crake T., Ozkor M.A., et al. Effect of evidence-based therapy for secondary prevention of cardiovascular disease: systematic review and meta-analysis. PLoS One. 2019; 14(1): e0210988. https://doi.org/10.1371/journal.pone.0210988

40. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021; 398(10304): 957–80. https://doi.org/10.1016/S0140-6736(21)01330-1

41. WHO. Technical package for cardiovascular disease management in primary health care: team-based care; 2019. Available at: https://apps.who.int/iris/handle/10665/260424

42. Mills K.T., Obst K.M., Shen W., Molina S., Zhang H.J., He H., et al. Comparative effectiveness of implementation strategies for blood pressure control in hypertensive patients: a systematic review and meta-analysis. Ann. Intern. Med. 2018; 168(2): 110–20. https://doi.org/10.7326/M17-1805

43. Padwal R.S., Bienek A., McAlister F.A., Campbell N.R. Epidemiology of hypertension in Canada: An update. Can. J. Cardiol. 2016; 32(5): 687–94. https://doi.org/10.1016/j.cjca.2015.07.734

44. Johnson W., Onuma O., Owolabi M., Sachdev S. Stroke: a global response is needed. Bull. World Health Organ. 2016; 94(9): 634A. https://doi.org/10.2471/BLT.16.181636

45. Gibson J. Multidisciplinary inpatient stroke unit care reduces death and dependency at discharge, with greatest benefits from care on a discrete stroke ward. Evid. Based Nurs. 2020; 24(4): 122. https://doi.org/10.1136/ebnurs-2020-103315

46. Rawson N.S.B. Leading causes of mortality and prescription drug coverage in Canada and New Zealand. Front. Public Health. 2020; 8: 544835. https://doi.org/10.3389/fpubh.2020.544835

47. Choudhry N.K., Avorn J., Glynn RJ, Antman E.M., Schneeweiss S., Toscano M., et al. Full coverage for preventive medi-cations after myocardial infarction. N. Engl. J. Med. 2011; 365(22): 2088–97. https://doi.org/10.1056/NEJMsa1107913

48. Björklund E., Nielsen S.J., Hansson E.C.., Karlsson M., Wallinder A., Martinsson A., et al. Secondary prevention medications after coronary artery bypass grafting and long-term survival: a population-based longitudinal study from the SWEDEHEART registry. Eur. Heart J. 2020; 41(17): 1653–61. https://doi.org/10.1093/eurheartj/ehz714

49. Hackam D.G., Spence J.D. antiplatelet therapy in ischemic stroke and transient ischemic attack. Stroke. 2019; 50(3): 773–8. https://doi.org/10.1161/STROKEAHA.118.023954

50. Mühlberger N., Schwarzer R., Lettmeier B., Sroczynski G., Zeuzem S., Siebert U. HCV-related burden of disease in Europe: a systematic assessment of incidence, prevalence, morbidity, and mortality. BMC Public Health. 2009; 9: 34. https://doi.org/10.1186/1471-2458-9-34

51. Petta S., Maida M., Macaluso F.S., Barbara M., Licata A., Craxì A., et al. Hepatitis C virus infection is associated with increased cardiovascular mortality: a meta-analysis of observational studies. Gastroenterology. 2016; 150(1): 145–55. https://doi.org/10.1053/j.gastro.2015.09.007

52. Kalidindi Y., Jung J., Feldman R., Riley T. 3rd. Association of direct-acting antiviral treatment with mortality among medicare beneficiaries with hepatitis C. JAMA Network Open. 2020; 3(7): e2011055. https://doi.org/10.1001/jamanetworkopen.2020.11055

53. Falade-Nwulia O., Suarez-Cuervo C., Nelson D.R., Fried M.W., Segal J.B., Sulkowski M.S. Oral direct-acting agent therapy for hepatitis C Virus infection: a systematic review. Ann. Intern. Med. 2017; 166(9): 637–48. https://doi.org/10.7326/M16-2575

54. Jülicher P., Chulanov V.P., Pimenov N.N., Chirkova E., Yankina A., Galli C. Streamlining the screening cascade for active Hepatitis C in Russia: A cost-effectiveness analysis. PLoS One. 2019; 14(7): e0219687. https://doi.org/10.1371/journal.pone.0219687

55. Poorolajal J., Hooshmand E., Mahjub H., Esmailnasab N., Jenabi E. Survival rate of AIDS disease and mortality in HIV-infected patients: a meta-analysis. Public Health. 2016; 139: 3–12. https://doi.org/10.1016/j.puhe.2016.05.004

56. Rodger A.J., Cambiano V. PARTNER Study Group. Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study. Lancet. 2019; 393(10189): 2428. https://doi.org/10.1016/S0140-6736(19)30418-0

57. WHO. Preventing suicide: a global imperative. Geneva; 2014.

58. RAND Corporation. Which behavioral interventions are most cost-effective in reducing drunk driving? 2015. Available at: https://www.rand.org/pubs/research_briefs/RB9826.html

59. Pitt T.M., Howard A.W., HubkaRao T., Hagel B.E. The effective-ness of booster seat use in motor vehicle collisions. Accid. Anal. Prev. 2021; 159: 106296. https://doi.org/10.1016/j.aap.2021.106296

60. Azami-Aghdash S. Meta-synthesis of qualitative evidence in road traffic injury prevention: a scoping review of qualitative studies (2000 to 2019). Arch. Public Health. 2020; 78(1): 110. https://doi.org/10.1186/s13690-020-00493-0

61. Yau R.K., Marshall S.W. Association between fire-safe cigarette legislation and residential fire deaths in the United States. Inj. Epidemiol. 2014; 1(1): 10. https://doi.org/10.1186/2197-1714-1-10

62. WHO. Preventing drowning: an implementation guide. Geneva; 2017. Available at: https://www.who.int/publications-detail-redirect/preventing-drowning-an-implementation-guide

63. Gallet C.A., Doucouliagos H. The impact of healthcare spending on health outcomes: A meta-regression analysis. Soc. Sci. Med. 2017; 179: 9–17. https://doi.org/10.1016/j.socscimed.2017.02.024

64. Budhdeo S., Watkins J., Atun R., Williams C., Zeltner T., Maruthappu M. Changes in government spending on healthcare and population mortality in the European Union, 1995–2010: a cross-sectional ecological study. J. R. Soc. Med. 2015; 108(12): 490–8. https://doi.org/10.1177/0141076815600907


Review

For citations:


Kobyakova O.S., Starodubov V.I., Khaltourina D.A., Zykov V.A., Zubkova T.S., Zamiatnina E.S. Promising measures to reduce the mortality in Russia: an analytical review. Health care of the Russian Federation. 2021;65(6):573-580. (In Russ.) https://doi.org/10.47470/0044-197X-2021-65-6-573-580

Views: 3135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0044-197X (Print)
ISSN 2412-0723 (Online)